China best Hot Sale Long-Service Life Piston Type Vacuum Pump for Chemistry manufacturer

Product Description

Hot Sale Long-Service Life Piston Type Vacuum Pump for Chemistry

Product introduction

 

ZP intelligent hydraulic piston pump has obtained many invention patents and utility model patents. In order to solve the problems of low efficiency of filter press, high energy consumption, complex media and high pressure requirement in the sewage industry, it breaks the conventional design concept and adopts segmented pressure control to realize automatic switching between low pressure and high flow rate and high pressure and low flow rate. Intelligent, efficient, energy-saving in one, greatly improving the efficiency of the filter press.
ZP-B standard hydraulic piston pump is a new generation of energy-saving, safe and environmentally friendly model, which has been awarded a number of invention patents and utility model patents. It realizes safe operation without overflow under different working conditions of displacement and pressure. Compared with similar pumps applied to the working conditions of filter press, the energy saving is up to 50%, and compared with the traditional filter press feeding pump, the energy saving is several times more. Adopting segmented feeding control, the feeding flow and pressure match the flow and pressure required for solid-liquid separation in the filter press, which can greatly improve the working efficiency of the filter press.
ZP-D double-input and double-output intelligent hydraulic piston pump is a kind of high-efficiency and energy-saving product newly developed by the company. The main wear-resistant parts of this product have been processed by special technology, which has a long service life. At the same time, the cooling and lubrication circulating water has been canceled, which greatly improves the working environment and thus achieves clean production. Compared with ZP series with the same flow rate and pressure, the power is reduced by 40%. It is the most professional and efficient filter press feed pump. It can be widely used in electroplating, printing and dyeing, chemical, municipal, mining and other sewage treatment industries.
Parameter of products

Model Rated flow rate m3 Pressure range Mpa Motor Power Kw Dimension  L*W*H(mm) Inlet and outlet pipe diameter Weight kg
ZP-15 15 0~2.0 7.5 1900*1030*1610 DN90 1350
ZP-25 25 0~2.0 11 1900*1030*1610 DN90 1450
ZP-35 35 0~2.0 15 1950*1100*1610 DN100 1700
ZP-45 45 0~2.0 18.5 2100*1320*1700 DN130 2000
ZP-60 60 0~2.0 22 2100* 1320*1800 DN130 2200
ZP-80 80 0~2.0 30 2150*1400* 1800 DN150 2750
ZP-100 100 0~2.0 30 2200*1500*2150 DN150 3200
ZP-120 120 0~2.0 37 2200*1500*2150 DN150 3300

Model Maximum flow rate m3 Pressure range Mpa Motor Power
Kw
Dimension  L*W*H(mm) Inlet and outlet pipe diameter Weight kg
ZP-B15  15 0~2.0 7.5 1700*1100* 1900 DN80 1300
ZP-B25 25 0~2.0 11 1700*1100* 1950 DN90 1350
ZP-B35 35 0~2.0 15 1840*1150*2250 DN100 1450
ZP-B45 45 0~2.0 18.5 2050* 1320* 2350 DN130 1700
ZP-B60 60 0~2.0 22 2050*1320* 2550 DN130 1900
ZP-B80 80 0~2.0 30 2230*1320* 2550 DN150 2300
ZP-B100 100 0-2.0 30 2230*1320* 2650 DN150 2550
ZP-B120 120 0~2.0 37 2300*1350* 2650 DN150 2920
ZP-B150 150 0~2.0 45 2300* 1370*2650 DN150 3100
ZP-B240 240 0~2.0 55 2920*1740*2500 DN200 6200
             

Model Rated flow rate  m3 Pressure range
Mpa
Rated Pressure Mpa Motor Power Kw Inlet and outlet pipe diameter
ZP-D80 80 0~1.5 1.0 18.5 DN125
ZP-D120 120 0~1.5 1.0 30 DN150
ZP-D160 160 0~1.5 1.0 37 DN150
ZP-D200 200 0~1.5 1.0 45 DN200
ZP-D250 250 0~1.5 1.0 55 DN200

Scope of usage 
Company profile

 

Recommended product

 

 

After-sales Service: Online Service
Warranty: 1 Year
Structure: Axial Plunger Pump
Cylinder Number: Multi Cylinder
Drive Mode: Hydraulic Driven Reciprocating Pump
Pump Shaft Position: Vertical
Customization:
Available

|

piston vacuum pump

What Are the Typical Applications of Piston Vacuum Pumps?

Piston vacuum pumps find applications in various industries and processes. Here’s a detailed explanation of the typical applications of piston vacuum pumps:

1. Laboratories and Research Facilities:

– Piston vacuum pumps are commonly used in laboratories and research facilities for a wide range of applications.

– They are utilized in vacuum ovens, freeze dryers, vacuum filtration systems, and other equipment requiring controlled evacuation.

2. Pharmaceuticals and Biotechnology:

– In the pharmaceutical and biotechnology industries, piston vacuum pumps are employed for processes such as solvent evaporation, distillation, and filtration.

– They are used in drug manufacturing, vaccine production, and research involving biochemistry and molecular biology.

3. Food Processing and Packaging:

– Piston vacuum pumps play a vital role in the food processing and packaging industry.

– They are used in vacuum packaging machines to remove air from packaging containers, extending the shelf life of food products.

4. HVAC and Refrigeration Systems:

– Piston vacuum pumps are utilized in HVAC (Heating, Ventilation, and Air Conditioning) systems and refrigeration systems.

– They help evacuate air and moisture from the systems to achieve the desired pressure and prevent contamination.

5. Manufacturing and Industrial Processes:

– Piston vacuum pumps are employed in various manufacturing and industrial processes.

– They are used for degassing, vacuum impregnation, vacuum drying, and other applications that require controlled evacuation.

6. Automotive Industry:

– In the automotive industry, piston vacuum pumps are often used in brake booster systems.

– They create a vacuum to assist in brake actuation, providing the necessary power for braking.

7. Electronics and Semiconductor Manufacturing:

– Piston vacuum pumps are utilized in electronics and semiconductor manufacturing processes.

– They help create a controlled environment with low-pressure conditions during the production of microchips, integrated circuits, and other electronic components.

8. Environmental Monitoring and Analysis:

– Piston vacuum pumps are utilized in environmental monitoring and analysis equipment.

– They are used in air sampling devices, gas analyzers, and other instruments that require precise vacuum control.

9. Scientific Research and Vacuum Systems:

– Piston vacuum pumps are employed in various scientific research applications.

– They are used in vacuum systems for particle accelerators, electron microscopes, mass spectrometers, surface analysis instruments, and other scientific equipment.

In summary, piston vacuum pumps have diverse applications in laboratories, pharmaceuticals, food processing, HVAC systems, manufacturing processes, automotive industry, electronics, environmental monitoring, scientific research, and more. Their ability to provide controlled evacuation and achieve moderate vacuum levels makes them suitable for a wide range of industries and processes.

piston vacuum pump

What Is the Energy Efficiency of Piston Vacuum Pumps?

The energy efficiency of piston vacuum pumps can vary depending on several factors. Here’s a detailed explanation:

1. Design and Technology:

– The design and technology used in piston vacuum pumps can significantly influence their energy efficiency.

– Modern piston pump designs often incorporate features such as optimized valve systems, reduced internal leakage, and improved sealing mechanisms to enhance efficiency.

– Advancements in materials and manufacturing techniques have also contributed to more efficient piston pump designs.

2. Motor Efficiency:

– The motor driving the piston pump plays a crucial role in overall energy efficiency.

– High-efficiency motors, such as those adhering to energy efficiency standards like NEMA Premium or IE3, can significantly improve the energy efficiency of the pump.

– Proper motor sizing and matching to the pump’s load requirements are also important to maximize efficiency.

3. Control Systems:

– The use of advanced control systems can optimize the energy consumption of piston vacuum pumps.

– Variable frequency drives (VFDs) or speed control systems can adjust the pump’s operating speed based on the demand, reducing energy consumption during periods of lower demand.

– Smart control algorithms and sensors can also help optimize the pump’s performance and energy efficiency.

4. System Design and Integration:

– The overall system design and integration of the piston vacuum pump within the application can impact energy efficiency.

– Proper sizing and selection of the pump based on the specific application requirements can ensure that the pump operates within its optimal efficiency range.

– Efficient piping and ducting design, as well as minimizing pressure losses and leaks, can further improve the overall energy efficiency of the system.

5. Load Profile and Operating Conditions:

– The load profile and operating conditions of the piston vacuum pump have a significant impact on energy consumption.

– Higher vacuum levels or flow rates may require more energy to be supplied by the pump.

– Operating the pump continuously at maximum capacity may lead to higher energy consumption compared to intermittent or variable load conditions.

– It’s important to evaluate the specific operating requirements and adjust the pump’s operation accordingly to optimize energy efficiency.

6. Comparing Efficiency Ratings:

– When comparing the energy efficiency of different piston vacuum pumps, it can be helpful to look for efficiency ratings or specifications provided by the manufacturer.

– Some manufacturers provide efficiency data or performance curves indicating the pump’s energy consumption at various operating points.

– These ratings can assist in selecting a pump that meets the desired energy efficiency requirements.

In summary, the energy efficiency of piston vacuum pumps can be influenced by factors such as design and technology, motor efficiency, control systems, system design and integration, load profile, and operating conditions. Considering these factors and evaluating efficiency ratings can help in selecting an energy-efficient piston vacuum pump for a specific application.

piston vacuum pump

What Are the Differences Between Single-Stage and Two-Stage Piston Vacuum Pumps?

Single-stage and two-stage piston vacuum pumps are two common types of pumps used for creating a vacuum. Here’s a detailed explanation of their differences:

1. Number of Stages:

– The primary difference between single-stage and two-stage piston vacuum pumps lies in the number of stages or steps involved in the compression process.

– A single-stage pump has a single piston that compresses the gas in one stroke.

– In contrast, a two-stage pump consists of two pistons arranged in series, allowing the gas to be compressed in two stages.

2. Compression Ratio:

– Single-Stage: In a single-stage piston vacuum pump, the compression ratio is limited to the single stroke of the piston. This means that the pump can achieve a compression ratio of approximately 10:1.

– Two-Stage: In a two-stage piston vacuum pump, the compression ratio is significantly higher. The first stage compresses the gas, and then it passes through an intermediate chamber before entering the second stage for further compression. This allows for a higher compression ratio, typically around 100:1.

3. Vacuum Level:

– Single-Stage: Single-stage piston vacuum pumps are generally suitable for applications that require moderate vacuum levels.

– They can achieve vacuum levels up to approximately 10-3 Torr (millitorr) or in the low micron range (10-6 Torr).

– Two-Stage: Two-stage piston vacuum pumps are capable of reaching deeper vacuum levels compared to single-stage pumps.

– They can achieve vacuum levels in the high vacuum range, typically down to 10-6 Torr or even lower, making them suitable for applications that require a more extensive vacuum.

4. Pumping Speed:

– Single-Stage: Single-stage pumps generally have a higher pumping speed or evacuation rate compared to two-stage pumps.

– This means that single-stage pumps can evacuate a larger volume of gas per unit of time, making them suitable for applications that require faster evacuation.

– Two-Stage: Two-stage pumps have a lower pumping speed compared to single-stage pumps.

– While they may have a slower evacuation rate, they compensate for it by achieving deeper vacuum levels.

5. Applications:

– Single-Stage: Single-stage piston vacuum pumps are commonly used in applications that require moderate vacuum levels and higher pumping speeds.

– They are suitable for laboratory use, vacuum packaging, HVAC systems, and various industrial processes.

– Two-Stage: Two-stage piston vacuum pumps are well-suited for applications that require deeper vacuum levels.

– They are commonly used in scientific research, semiconductor manufacturing, analytical instruments, and other processes that demand high vacuum conditions.

6. Size and Complexity:

– Single-Stage: Single-stage pumps are generally more compact and simpler in design compared to two-stage pumps.

– They have fewer components, making them easier to install, operate, and maintain.

– Two-Stage: Two-stage pumps are relatively larger and more complex in design due to the additional components required for the two-stage compression process.

– They may require more maintenance and expertise for operation and servicing.

In summary, the main differences between single-stage and two-stage piston vacuum pumps lie in the number of stages, compression ratio, achievable vacuum levels, pumping speed, applications, and size/complexity. Selecting the appropriate pump depends on the desired vacuum level, pumping speed requirements, and specific application needs.

China best Hot Sale Long-Service Life Piston Type Vacuum Pump for Chemistry   manufacturer China best Hot Sale Long-Service Life Piston Type Vacuum Pump for Chemistry   manufacturer
editor by CX 2023-11-12