China manufacturer Low Noise High Pressure Oil-Free Piston Vacuum Pump for Sale with Hot selling

Product Description

Low Noise High Pressure Oil-Free Piston Vacuum Pump for Sale

Product introduction


ZP intelligent hydraulic piston pump has obtained many invention patents and utility model patents. In order to solve the problems of low efficiency of filter press, high energy consumption, complex media and high pressure requirement in the sewage industry, it breaks the conventional design concept and adopts segmented pressure control to realize automatic switching between low pressure and high flow rate and high pressure and low flow rate. Intelligent, efficient, energy-saving in one, greatly improving the efficiency of the filter press.
ZP-B standard hydraulic piston pump is a new generation of energy-saving, safe and environmentally friendly model, which has been awarded a number of invention patents and utility model patents. It realizes safe operation without overflow under different working conditions of displacement and pressure. Compared with similar pumps applied to the working conditions of filter press, the energy saving is up to 50%, and compared with the traditional filter press feeding pump, the energy saving is several times more. Adopting segmented feeding control, the feeding flow and pressure match the flow and pressure required for solid-liquid separation in the filter press, which can greatly improve the working efficiency of the filter press.
ZP-D double-input and double-output intelligent hydraulic piston pump is a kind of high-efficiency and energy-saving product newly developed by the company. The main wear-resistant parts of this product have been processed by special technology, which has a long service life. At the same time, the cooling and lubrication circulating water has been canceled, which greatly improves the working environment and thus achieves clean production. Compared with ZP series with the same flow rate and pressure, the power is reduced by 40%. It is the most professional and efficient filter press feed pump. It can be widely used in electroplating, printing and dyeing, chemical, municipal, mining and other sewage treatment industries.
Parameter of products

Model Rated flow rate m3 Pressure range Mpa Motor Power Kw Dimension  L*W*H(mm) Inlet and outlet pipe diameter Weight kg
ZP-15 15 0~2.0 7.5 1900*1030*1610 DN90 1350
ZP-25 25 0~2.0 11 1900*1030*1610 DN90 1450
ZP-35 35 0~2.0 15 1950*1100*1610 DN100 1700
ZP-45 45 0~2.0 18.5 2100*1320*1700 DN130 2000
ZP-60 60 0~2.0 22 2100* 1320*1800 DN130 2200
ZP-80 80 0~2.0 30 2150*1400* 1800 DN150 2750
ZP-100 100 0~2.0 30 2200*1500*2150 DN150 3200
ZP-120 120 0~2.0 37 2200*1500*2150 DN150 3300

Model Maximum flow rate m3 Pressure range Mpa Motor Power
Dimension  L*W*H(mm) Inlet and outlet pipe diameter Weight kg
ZP-B15  15 0~2.0 7.5 1700*1100* 1900 DN80 1300
ZP-B25 25 0~2.0 11 1700*1100* 1950 DN90 1350
ZP-B35 35 0~2.0 15 1840*1150*2250 DN100 1450
ZP-B45 45 0~2.0 18.5 2050* 1320* 2350 DN130 1700
ZP-B60 60 0~2.0 22 2050*1320* 2550 DN130 1900
ZP-B80 80 0~2.0 30 2230*1320* 2550 DN150 2300
ZP-B100 100 0-2.0 30 2230*1320* 2650 DN150 2550
ZP-B120 120 0~2.0 37 2300*1350* 2650 DN150 2920
ZP-B150 150 0~2.0 45 2300* 1370*2650 DN150 3100
ZP-B240 240 0~2.0 55 2920*1740*2500 DN200 6200

Model Rated flow rate  m3 Pressure range
Rated Pressure Mpa Motor Power Kw Inlet and outlet pipe diameter
ZP-D80 80 0~1.5 1.0 18.5 DN125
ZP-D120 120 0~1.5 1.0 30 DN150
ZP-D160 160 0~1.5 1.0 37 DN150
ZP-D200 200 0~1.5 1.0 45 DN200
ZP-D250 250 0~1.5 1.0 55 DN200

Product accessories

Pressure/Flow Graph

Scope of usage
Company profile


Recommended product



After-sales Service: Online Service
Warranty: 1 Year
Structure: Axial Plunger Pump
Cylinder Number: Multi Cylinder
Drive Mode: Hydraulic Driven Reciprocating Pump
Pump Shaft Position: Vertical


piston vacuum pump

What Are the Key Components of a Piston Vacuum Pump?

A piston vacuum pump consists of several key components that work together to create a vacuum. Here’s a detailed explanation of these components:

1. Cylinder:

– The cylinder is a cylindrical chamber where the piston moves back and forth.

– It provides the housing for the piston and plays a crucial role in creating the vacuum by changing the volume of the chamber.

2. Piston:

– The piston is a movable component that fits inside the cylinder.

– It creates a seal between the piston and cylinder walls, allowing the pump to create a pressure differential and generate a vacuum.

– The piston is typically driven by a motor or an external power source.

3. Intake Valve:

– The intake valve allows gas or air to enter the cylinder during the suction stroke.

– It opens when the piston moves downward, creating a vacuum and drawing gas into the cylinder from the system being evacuated.

4. Exhaust Valve:

– The exhaust valve allows the expelled gas to exit the cylinder during the compression stroke.

– It opens when the piston moves upward, allowing the compressed gas to be expelled from the cylinder.

5. Lubrication System:

– Piston vacuum pumps often incorporate a lubrication system to ensure smooth operation and maintain an airtight seal between the piston and cylinder walls.

– Lubricating oil is introduced into the cylinder to provide lubrication and help maintain the seal.

– The lubrication system also helps to cool the pump by dissipating heat generated during operation.

6. Cooling System:

– Some piston vacuum pumps may include a cooling system to prevent overheating.

– This can involve the circulation of a cooling fluid or the use of cooling fins to dissipate heat generated during operation.

7. Pressure Gauges and Controls:

– Pressure gauges are often installed to monitor the vacuum level or pressure within the system.

– Control mechanisms, such as switches or valves, may be present to regulate the operation of the pump or maintain the desired vacuum level.

8. Motor or Power Source:

– The piston in a piston vacuum pump is typically driven by a motor or an external power source.

– The motor provides the necessary mechanical energy to move the piston back and forth, creating the suction and compression strokes.

9. Frame or Housing:

– The components of the piston vacuum pump are housed within a frame or housing that provides structural support and protection.

– The frame or housing also helps to reduce noise and vibration during operation.

In summary, the key components of a piston vacuum pump include the cylinder, piston, intake valve, exhaust valve, lubrication system, cooling system, pressure gauges and controls, motor or power source, and the frame or housing. These components work together to create a vacuum by reciprocating the piston within the cylinder, allowing gas to be drawn in and expelled, while maintaining an airtight seal. The lubrication and cooling systems, as well as pressure gauges and controls, ensure smooth and efficient operation of the pump.

piston vacuum pump

How Do You Troubleshoot Common Issues with Piston Vacuum Pumps?

Troubleshooting common issues with piston vacuum pumps involves a systematic approach to identify and resolve problems. Here’s a detailed explanation:

1. Insufficient Vacuum Level:

– If the vacuum level achieved by the piston pump is lower than expected:

– Check for leaks: Inspect all connections, seals, and fittings for any signs of leakage. Repair or replace any damaged components.

– Verify valve operation: Ensure that the valves in the pump are functioning correctly. Clean or replace any faulty valves that may be impeding the pump’s performance.

– Check for worn piston or cylinder: Examine the piston and cylinder for signs of wear. If necessary, replace these components to restore optimal vacuum performance.

2. Excessive Noise or Vibrations:

– If the piston pump is producing excessive noise or vibrations:

– Check for misalignment: Ensure that the pump is properly aligned with its drive mechanism. Adjust or realign as necessary.

– Inspect mounting and support: Examine the pump’s mounting and support structure to ensure it is stable and secure. Reinforce or repair any weak or damaged mounts.

– Verify lubrication: Adequate lubrication is crucial for smooth pump operation. Check the lubrication system and ensure it is supplying sufficient lubricant to all necessary components.

3. Overheating:

– If the piston pump is overheating:

– Check cooling system: Inspect the cooling system, including fans, heat exchangers, and cooling fins. Clean or replace any clogged or malfunctioning cooling components.

– Verify airflow: Ensure that there is proper airflow around the pump. Remove any obstructions or debris that may be impeding the flow of cooling air.

– Evaluate operating conditions: Examine the pump’s operating conditions, such as ambient temperature and duty cycle. Adjust these factors if necessary to prevent overheating.

4. Oil Contamination:

– If there is oil contamination in the vacuum system:

– Check oil seals: Inspect the seals in the pump for any signs of damage or wear. Replace any faulty seals that may be allowing oil leakage.

– Verify oil level and quality: Ensure that the pump’s oil level is correct and that the oil is clean and free from contaminants. Replace the oil if necessary.

– Evaluate oil mist separation: If the pump is equipped with oil mist separation mechanisms, verify their effectiveness. Clean or replace any filters or separators that may be compromised.

5. Insufficient Pumping Capacity:

– If the pump is unable to meet the required pumping capacity:

– Check for blockages: Inspect the intake and exhaust ports for any blockages or obstructions. Clear any debris or foreign objects that may be impeding the pump’s operation.

– Verify valve operation: Ensure that the valves are opening and closing properly. Clean or replace any valves that may be stuck or malfunctioning.

– Evaluate motor performance: Assess the motor driving the pump for any issues such as insufficient power or improper speed. Repair or replace the motor if necessary.

6. Manufacturer’s Guidelines:

– It’s important to consult the manufacturer’s guidelines and documentation for specific troubleshooting procedures and recommendations tailored to the particular piston vacuum pump model.

– Follow the manufacturer’s instructions for routine maintenance, inspections, and any specific troubleshooting steps provided.

In summary, troubleshooting common issues with piston vacuum pumps involves steps such as checking for leaks, verifying valve operation, inspecting for wear or misalignment, ensuring proper lubrication and cooling, addressing oil contamination, clearing blockages, and evaluating motor performance. Following the manufacturer’s guidelines and documentation is essential for accurate troubleshooting and resolving problems effectively.

piston vacuum pump

How Do You Maintain and Service a Piston Vacuum Pump?

Maintaining and servicing a piston vacuum pump is essential to ensure its optimal performance and longevity. Here’s a detailed explanation:

1. Regular Inspection:

– Perform regular visual inspections of the pump to check for any signs of damage, leaks, or wear.

– Inspect the seals, gaskets, and fittings for any cracks or deterioration.

– Ensure that all connections are tight and secure.

2. Oil Change:

– Piston vacuum pumps typically require regular oil changes to maintain proper lubrication and prevent contamination.

– Follow the manufacturer’s guidelines regarding the frequency of oil changes.

– Drain the old oil completely and replace it with the recommended oil type and quantity.

– Dispose of the used oil according to proper environmental regulations.

3. Filter Replacement:

– Many piston vacuum pumps have filters to prevent dust, particles, and contaminants from entering the pump.

– Check the filter regularly and replace it as needed to maintain proper airflow and prevent clogging.

4. Cleaning:

– Keep the exterior of the pump and its surrounding area clean and free from debris.

– Use a soft cloth or brush to remove any dust or dirt accumulation.

– Avoid using harsh chemicals or solvents that may damage the pump’s surfaces.

5. Seals and Gaskets:

– Inspect the seals and gaskets regularly and replace them if they show signs of wear or damage.

– Ensure that the seals provide a proper airtight seal to prevent leaks and maintain vacuum performance.

6. Cooling System:

– If the piston vacuum pump has a cooling system, monitor it regularly to ensure proper functioning.

– Clean or replace the cooling system components as recommended by the manufacturer.

7. Professional Maintenance:

– Consider scheduling professional maintenance and service at regular intervals, especially for more complex or critical applications.

– Professional technicians can perform in-depth inspections, conduct performance tests, and address any specific issues or concerns.

– They can also provide recommendations on optimizing the pump’s performance and extending its lifespan.

8. Manufacturer Guidelines:

– Always refer to the manufacturer’s maintenance and service guidelines specific to your piston vacuum pump model.

– Follow their recommendations regarding oil type, oil level, maintenance intervals, and any other specific instructions.

– Adhering to the manufacturer’s guidelines ensures proper operation and prevents voiding the warranty.

In summary, maintaining and servicing a piston vacuum pump involves regular inspection, oil changes, filter replacement, cleaning, checking seals and gaskets, monitoring the cooling system, and considering professional maintenance. Following the manufacturer’s guidelines is crucial for effective maintenance and to maximize the pump’s performance and lifespan.

China manufacturer Low Noise High Pressure Oil-Free Piston Vacuum Pump for Sale   with Hot selling	China manufacturer Low Noise High Pressure Oil-Free Piston Vacuum Pump for Sale   with Hot selling
editor by CX 2023-11-18